

Edexcel Chemistry A-level

Practical 8

Determination of enthalpy change using Hess's Law.

Enthalpy change for a decomposition of potassium hydrogenearbonate cannot be measured directly. The reaction needs heating, so the recorded ΔT is not exclusively due to the decomposition of the starting material.

Two reactions (with measurable enthalpy changes) can be combined to form a desired reaction with unmeasurable enthalpy change (and therefore calculate its enthalpy change).

Hess's law: The enthalpy change for a reaction is independent of the path taken.

Method

- 1. Place one of the reactants into a polystyrene cup and place a thermometer with it.
- 1. Start a stopwatch and record the temperature of the liquid every minute.
- 2. At 4 minutes, add the second reactant and dont record a temperature change for this minute.
- 3. At 5 minutes continue taking temperature readings each minute for a further ten minutes.
- 4. Plot temperatures of a graph and extrapolate to find ΔT .
- 5. Repeat for the second reaction.

Key Points

endothermic.

- Q = mcΔT,
 where m = mass of the solution, c = specific heat capacity, ΔT = change in temperature.
- ΔH = Q/moles,
 where Q is in kJ. Include +/- sign to specify whether the reaction is exothermic or endothermic. If temperature increases it is exothermic. If temperature decreases it is
- This practical combines two neutralisation reactions:

(1)
$$K_2CO_3 + 2 HCI \rightarrow 2 KCI + H_2O + CO_2$$

(2) $2 KHCO_3 + 2 HCI \rightarrow 2 KCI + 2H_2O + 2CO_2$

• The desired reaction is: $2 \text{ KHCO}_3 \rightarrow \text{K}_2\text{CO}_3 + \text{CO}_2 + \text{H}_2\text{O}$. Therefore to find the enthalpy of the desired reaction, measure enthalpy change for (1) and (2) then calculate (\triangle H2) - (\triangle H1).

Errors

- We assume the specific heat capacity of the solution to be that of water.
- Polystyrene is more insulating than glass, so less heat is lost.

